INFLUENCE OF THE INTERNAL ELECTRIC FIELD IN Batio $_3$ ON THE LIFETIME OF $^{89}\mathrm{Zr}$

P. HUBER, St. GAGNEUX and H. LEUENBERGER Physikalisches Institut, Universität Basel, Switzerland

Received 22 April 1968

In the internal electric field of BaTiO $_3$ a change in the lifetime of $^{89}{\rm Zr}$ was investigated. The measured relative change of the decay constant is $\Delta\lambda/\lambda$ = $(4.4\pm0.4)\times10^{-4}$.

From an aqueous solution of 2 mCi carrier-free $^{89}\mathrm{ZroCl}_2$ (77% EC, $T_{\frac{1}{2}}$ = 78.4 h) [1] ZiO(OH)₂ was adsorbed by high purity BaTiO₃, from which two equivalent samples, A and B, were sintered.

Below the Curie temperature, $T_{\rm C}=120^{\rm O}{\rm C}$, the BaTiO $_3$ lattice is tetragonal and spontaneously polarized, which causes an electric field strength [2] of about 10^8 V/cm, at the place of the Ti (or substituted $^{89}{\rm Zr}$) ion. Above $T_{\rm C}$ the lattice is cubic and the spontaneous polarization vanishes.

This fact permits one to switch off the internal electric field by heating the sample above $T_{\rm C}$. The idea of the experiment is to compare the lifetime of $^{89}{\rm Zr}$ in these two lattice states of BaTiO₃. The activities $N_{\rm A}$ and $N_{\rm B}$, respectively, of these samples were determined with two 7.5×7.5 cm² NaI(Tl) scintillation counters. After a measuring period of $\Delta t = 400$ s the samples were mechanically interchanged and the activities automatically registered. This was done during a time of more then five half-lives.

For the evaluation of the relative change in the decay constant, the following ratio F(t) of activities were calculated:

$$F(t) = \frac{N_{\rm A}(t-\Delta t) + N_{\rm A}(t+\Delta t)}{2N_{\rm B}(t)} \sim \; \exp\left(-t\Delta\lambda\right) \approx \; 1 - t\Delta\lambda \,. \label{eq:force}$$

The function F(t) is essentially insensitive to the electronic drift of the apparatus. If the difference in lifetimes is small, F(t) will change linearly with time.

The experimental result shows a decrease of the decay constant λ of $^{89}{\rm Zr}$ in the electric field of the BaTiO_3. This can be interpreted by the assumption that the electron density at the $^{89}{\rm Zr}$ nucleus has been decreased by the electric field.

The increase of the ratio F(t) on the left part of fig. 1 corresponds to the following change of

Fig. 1. Ratio of activities of the samples at different temperatures as a function of time. The half-life of $^{89}{\rm Zr}$ is equal to $2.82\times 10^5~{\rm s}$. The figure shows the function F(t). In the first time interval $(0-4.2\times 10^5~{\rm s})$ probe B, and in the second time interval $[(4.2-8.5)\times \times 10^5~{\rm s}]$ probe A is held at a temperature $T>T_{\rm C}$.

the decay constant

$$\frac{\lambda_B(^{89}\mathrm{Zr}, 200^{\circ}\mathrm{C}) - \lambda_A(^{89}\mathrm{Zr}, 20^{\circ}\mathrm{C})}{\lambda(^{89}\mathrm{Zr})} = (4.4 \pm 0.4) \times 10^{-4}.$$

On the right hand part of fig. 1, i.e. sample A at 200° C and B at 20° C, the decrease of F(t) corresponds to a smaller change of λ :

$$\begin{split} \frac{\lambda_{\rm B}(^{89}{\rm Zr},20^{\rm o}{\rm C}) - \lambda_{\rm A}(^{89}{\rm Zr},200^{\rm o}{\rm C})}{\lambda(^{89}{\rm Zr})} = \\ = -(3.2 \pm 0.6) \times 10^{-4} \; . \end{split}$$

The difference of these results can be explained by the different amount of $^{89}\mathrm{Zr}$ atoms substituted at the lattice-site of the Ti atoms in the ferroelectric samples. This has been confirmed by the measurement of F(t), when both samples were at $20^{\circ}\mathrm{C}$, i.e. spontaneously polarized (fig. 2). The increase of F(t) corresponds to

$$\frac{\lambda_{\rm B}(^{89}{\rm Zr}, 20^{\rm o}{\rm C}) - \lambda_{\rm A}(^{89}{\rm Zr}, 20^{\rm o}{\rm C})}{\lambda(^{89}{\rm Zr})} = (1.3 \pm 0.6) \times 10^{-4},$$

Fig. 2. Ratio of activities as a function of time. Both samples in the ferroelectric state.

which is exactly the difference of the measured results in fig. 1.

We are much obliged to Prof. Dr. W. Seelmann-Eggebert, Kernforschungszentrum Karlsruhe for the supply of the ⁸⁹Zr sources. Prof. Dr. H. Gränicher, Zürich and Dr. H. Seiler, Basel have encouraged us with many suggestions. The Swiss National Foundation has financially supported our experiments.

References

- D. M. Van Patter and S. M. Schafroth, Nuclear Phys. 50 (1964) 113.
 W. Känzig, Helv. Phys. Acta 24 (1951) 175.