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Introduction

Percolation theory [1] and fractal geometry [2] are
attracting an increasing number of scientists from
various research fields. Through the application of
percolation theory and the concept of fractal
geometry it is possible to gain new insights into well-
known problems of pharmaceutical technology, such
as dosage form design, characterization of dosage
forms, unit operations in production and drug release
properties of matrix systems.

What is Percolation Theory?

Percolation theory deals with the number and prop-
erties of clusters of occupied sites in a real or virtual
lattice. There are two main kinds of percolation—site
and bond-and several variations of these two types
[3,4]. A cluster is defined differently for each kind of
percolation. In site percolation a cluster is defined as
a group of neighbouring occupied sites. The sites in
the lattice are considered to be occupied with a prob-
ability p (or unoccupied with a probability 1-p). In
bond percolation all sites in a lattice are occupied.
Bonds may or may not be formed between two near-
est neighbours. The connecting bond is formed with a

Figure 1a

Example for percolation on a 60X 60 square lattice for
D =0.50[1]. Occupied sites are shown as “*”; empty
sites are ignored. Two clusters are marked by bonds
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Figure 1b

Example for percolation on a 60X 60 square lattice
forp =0.60 [1]. The “infinite cluster” is marked
by bonds

probability p (or not formed with a probability 1-p).
A cluster in bond percolation is thus defined as a
group of neighbours connected by bonds.

When clusters are isolated, they are termed finite.
On the other hand, when a cluster percolates a lat-
tice, i.e. when a cluster spans the length, breadth and
height of a lattice, it is considered infinite because in
percolation theory the lattices are considered to be
infinitely large. The probability at which a cluster just
percolates a system is termed percolation threshold,
Pe. The probability for site percolation corresponds
to ca. 60% of occupied sites in a two-dimensional
square lattice. The exact value for p. depends on the
geometrical arrangement, i.e. lattice type and
topological dimension.

In Figure 1a two rather big-sized clusters are shown
which, however, do not span the whole lattice, i.e. at
a probability p = 0.50 of occupied sites, no “infinite
cluster” is formed.

According to Stauffer [1] Figures la and 1b could
describe a forest where each occupied site of the
virtual lattice represents a tree. In case of a forest fire
only clusters of trees may burn down. Thus, the
diffusional spreading of a forest fire can be amply
described by percolation theory.



In a crystal, lattice sites are occupied by different
atoms, vacancies, defects, etc., whereas in a phar-
maceutical dosage form, e.g. a tablet, “lattice sites”
are occupied by pores or particles. The solid particles
may be lubricants, disintegrants, fillers, etc.

Figure 1b could, as an example, describe a two-
dimensional cross section of a continuous pore net-
work in a tablet, whereas Figure la shows only iso-
lated pores. If the “infinite” network in Figure 1b is
interpreted as bonds between particles compressed in
a tablet, the percolation threshold p. indicates the
formation of a tablet with zero strength.

Site and Bond Percolation

In case of site percolation the cluster size of two
occupied sites is equal to two, whereas in bond perco-
lation only one bond is formed between the two
occupied sites, i.e. the cluster size is equal to one
(Fig. 2). As a consequence, the percolation

Figure 2

Site and bond percolation: definition of cluster size

CLUSTER SIZE=Z2 CLUSTER SIZE=41

thresholds p., i.¢. critical probabilities or critical con-
centrations depend on the type of lattice and on the
type of percolation (Table 1). In a three-dimensional
lattice there are two percolation thresholds, which
may be illustrated by imagining a sponge type sys-

Table 1

Percolation thresholds for two- and three-dimensional
lattices. “Site” refers to site percolation and bond to

bond percolation [1]

Lattice Site Bond
Honeycomb 06962 065271
Square 0-59275 0-50000
Triangular 0-50000 0-34729
Diamond 0-428 0-388
Simple cubic 03117 0-2492
BCC 0-245 0-1785
FCC 0-198 0-119

tem. Below the lower percolation threshold the
sponge does not exist, there are only isolated clusters
of sponge material. Above the first (i.e. lower) per-
colation threshold a sponge is formed which spans
the whole three-dimensional lattice. The pore cluster
still exists as an infinite cluster. Thus, two infinite
clusters simultaneously occur side by siGe in the sys-
tem. This is a pecularity of a three-dimensional sys-
tem in contrast to a two-dimensional system.

If more sites are increasingly occupied by sponge
material, isolated pores are finally formed, i.e. above
the second percolation threshold the pore system no
longer forms an “infinite network”.

Site Percolation in an Oil-in-water (o/w) System

In case of an o/w or w/o system the “lattice sites” are
occupied by oil or water droplets. The probability for
an o/w or w/o system depends on the volume con-
centration of oil and water as well as on the geometri-
cal arrangement of the oil or water droplets. In case
of low concentration of oil in the system, the oil
droplets form isolated clusters in a continuous phase
of water. With increasing amount of oil, the oil drop-
lets form an infinite cluster. The infinite cluster for-
mation takes place at a critical volume to volume
ratio of the oil in water. The critical volume to vol-
ume ratio of oil corresponds to the first percolation
threshold. When the concentration of oil is further
increased, a point is reached where the water drop-
lets form isolated clusters in a continuous phase of
oil. This concentration is the second percolation of
the system. Above the first percolation threshold and
below the second percolation threshold oil and water
droplets form a continuous network (case of a
“sponge”-like system) of clusters.

According to Mandelbrot [2], Figure 3 represents a
description of the holes in a Swiss cheese (Emmen-
taler) with the fractal dimension of D = 1.9. How-

Figure 3

Cross section through a Swiss cheese (Emmentaler)
[2] or micrograph of an oil-in-water emulsion?
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Figure 4

ever, Figure 3 illustrates as well an oil-in-water emul-
sion. The geometry of a system can be considered as
an ideal fractal only when the system exhibits similar
geometry at all magnifications. Such a system is said
to manifest self-similarity.

Figure 4 characterizes another percolating system
which can be described as a foam. The fractal dimen-
sion is D = 1.75 and is less than that for the o/w
system described in Figure 3, where the water phase
covers nearly completely the surface with its physical
dimension d = 2.

Bond Percolation in a Powder System

A typical bond percolation problem is the formation
of a tablet on the basis of the compaction of a powder

system [5]. The first percolation threshold, p, corre-

Figure 5

Semilogarithmic plot of Brinell Hardness versus
normalized solid fraction p of acetylsalicylic acid and
microcrystalline cellulose 8 : 2 (w/w) compacts. The
second percolation threshold p. corresponds
top =0.89
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sponds to the formation of an “infinite network of
bonds” between the particles compacted. The value
of this threshold, p., corresponds to the relative
density of the compact, where the tablet is just
formed, but shows approximately zero strength. At
high relative densities, i.e. high compaction pressure
and low porosities, the pore system does not form a
continuous network but isolated clusters. This rela-
tive density corresponds to the second percolation
threshold. Depending on dosage form design impor-
tant changes in mechanical and biopharmaceutical
properties of the tablet occur at the percolation
threshold [6].

Figure 6

An idealized three-dimensional network of a pore
system (Menger sponge) with the fractal dimension
of D=2.72[2]

Ants in the Labyrinth

Molecules of an active substance, which are enclosed
in a matrix type controlled release system, may be
called ants in a labyrinth [1] trying to escape from an
ordered or disordered network of connected pores.
The random walk distance R of such an ant is related
to time as follows: R?=Dt, where D is equal to the
diffusivity. Close to the percolation threshold, where
the pores start to form isolated clusters, this diffusion
law is not valid. In this case the value of D varies
proportionally to (p-pc)*, where w is the conductivity
exponent and R is proportional to t* with k=0.27.
This process is called anomalous diffusion.

Generally, in percolation theory, system properties
can be described by a power law which relates the
property and (p-pc)®. Critical phenomena in ther-
modynamics are also adequately described by this
power law.

The question arises how to describe a network of
connected pores. The following figures show models
based on the concept of fractal dimension. Figure 6
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Figure 7

Idealized description of a bronchial tree with fractal
dimension D = 2.9 [2]

Figure 8

Mathematical modelling of a cross section through the
small intestine using pigeonhole model [7]
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represents an idealized three-dimensional network of
a pore system (Menger sponge) where the size and
geometry of pores are self-similar. This labyrinth has
a very high internal surface and a fractal dimension
D =2.72.

6

The lungs (Fig. 7) can be described as another
idealized self-similar network, with an extremely
high internal surface and a fractal dimension D =2.9,
which is close to the volume filling physical dimen-
sion D = 3. Pape et al. [7] used the pigeonhole model
to describe the large surface area of the intestine
(Fig. 8).

Fractals and Coastline of Britain Problem

The reciprocal of the exponent k (see preceding
chapter) is sometimes called the fractal dimension of
the ant’s walk. This fractal dimension is different
from the fractal dimension of the cluster on which the
walk takes place. Considering the surface structure of
a pore system, a certain roughness of the surface has
to be expected. This roughness is related to the sur-
face structure of the particles and granules com-
pacted and depends on the compaction process.
Applying the concept of fractal dimension [2], the
surface roughness or in the linear case the irregularity
of a coastline, i.e. “the Coastline of Britain Problem”
can be quantitatively solved.

The “Coastline of Britain Problem” originates from
the fact that the length of the coastline as well as the
length of many border lines, e.g. frontiers, depend
on the resolution power, i.e. the unit length applied
as a yardstick. A log-log plot of length of the border
line versus unit length yields in general a slope pro-
portional to (1-D). The plot is called Richardson plot
(Fig. 9).

Using the method of polygon approximation, linear
fractal dimensions of lactose and dicalciumphosphate
granules have been estimated by us to be D (lactose)
= 1.091 = 0.007 and D (dicalciumphosphate) =
1.064 = 0.002 (Fig. 10).

In case of isotropic growth of these lactose granules it
is possible to give an estimate of the surface rough-

Figure 9

Richardson plot for coastlines and boundary lines
of different countries [2]
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Figure 10

An outline of the surface roughness of a lactose
granule

&

Coastline of a lactose granule with linear fractal dimension
D=1.091 £+ 0.007

Figure 11

Mathematical simulation of coastlines with fractal
dimensions D = 1.47,1.26, and 1.16

* etc. D = 1.26

‘ etc. D = 1.16

Figure 12

Scanning electron micrograph of the surface
of lactose granules

ness, i.e. surface fractal dimension D (surface) = D
(linear) + 1. Surface fractals have a dimension be-
tween 2 and 3. Depending on the individual lactose
granule batch and experimental method to determine
fractal dimension, linear fractals between D =1.091
+ 0.007 and D = 1.19 * 0.08 have been found.
Figure 11 shows a mathematical simulation of a self-
similar linear (fractal) coastline with different D val-
ues. The surface roughness of lactose granules is
qualitatively described by a scanning electron micro-
graph in Figure 12.

Dosage Form Design

A dosage form usually consists of an active substance
and different excipients. In general, the material
used is dispersed in a finely divided state in the dos-
age form. If one varies the proportions of the con-
stituents in the formulation, important changes in the
properties of the dosage form have to be expected as
soon as one of the excipients involved forms an infi-
nite cluster at the percolation threshold [5, 6]. For
example the following properties of a tablet may
change: crushing strength, friability, disintegration
time, release properties, etc. (Fig. 13a and 13b).

Figure 13aand b

The disintegration time as a function of compositions
of binary component compacts [6]
a) Potassium chloride/ Avicel®
b) Lactose/Starch Rx 1500®
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