

Dr. Maxim Puchkov ¹ Prof. Dr. Hans Leuenberger ^{1,2}

CINCAP LLC, center for innovation in computer-aided pharmaceutics¹ c/o Ifiip llc, Institute for innovation in industrial pharmacy²

Basel, Switzerland

Virtual training tools — a video game or more?

Virtual Equipment Simulators (VES) in pharmaceutical production – a novel tool for continuous education and personnel training

FDA Whitepaper March 2004 Three Dimensions of the Critical Path

Assessing Safety	Show that product is adequately safe for each stage of development	 Preclinical: product safe enough for early human testing Eliminate products with safety problems early Clinical: show that product is safe enough for commercial distribution
Demonstrating Medical Utility	Show that the product benefits people	 Preclinical: Select appropriate design (devices) or candidate (drugs) with high probability of effectiveness Clinical: Show effectiveness in people
Industrialization	Go from lab concept or prototype to manufacturable product	 Design a high-quality product Physical design/Characterization/Specifications Develop mass production capacity Manufacturing scale-up/Quality control

FDA Whitepaper March 2004 Three Dimensions of the Critical Path

The SIGMA Concept I

FDA pushes forward the PAT Initiative for very good reasons:

- The variability of most pharmaceutical processes needs to be reduced.
- The performance of a process can be described by its Sigma value.

The SIGMA Concept II

- The champion is the chip industry with a six Sigma manufacturing performance (static values)
 - i.e. with an amount of defective samples \leq 2 ppb.
- The performance of the pharmaceutical industry is around 2 Sigma (≤ 4.6 % defectives).

Faster Time to Market: Dosage Form Development!

- The development of a dosage form from production of the first formulation in the preclinical research up to registration of the commercial form is very costly and lasts between 8 to 12 years.
- To reduce time to market it is important to think about an integrated approach and a better connectivity between pharma R&D and manufacturing.

Poor Connectivity:

"... Companies tend to operate in silos – R&D, manufacturing, marketing. This is a very proprietary culture. Knowledge and information sharing is the basis to overcome inefficiencies ..."

John Moore, Analyst

Source: Catching up with Reengineering June 2, 2003 Chemical & Engineering News, Vol. 81, N° 22

Improved connectivity: Co-Development Strategy

Courtesy of J.Werani (Pfizer)

Rationale: design of quality + reduce human errors

- Need for robust formulation and process design
 - Formulation screening is costly and time consuming
 - Non-robust formulation will jeopardise full-scale production
- Need for mechanistic models and expert systems
- Need to reduce possibility of human error
 - Batch-wise production is an "agar plate" for growth and flourish of manufacturing failures
 - Floor operators skill assessment and continuous education

Knowledge pyramid

Co-Development Toolbox

Co-Development

Example: granule size and tablet disintegration

Prediction of the optimum amount of disintegrant to minimize the disintegration time (use of expert system CINCAP):

- based on percolation theory and cellular automata
- mathematical description based only on geometrical and physical considerations independent on chemical properties of compounds!

Two cases of water penetration into a tablet as a factor of particles size:

Case1: $r \le (\sqrt{3}-1) \times R$

$$\chi_{dis} = \left(\frac{p_s^{rcp}}{1 - \varepsilon} - \varepsilon\right) \times 100$$

Case2: $r > (\sqrt{3}-1) \times R$

$$\chi_{dis} = \left(\frac{p_s^{rcp}}{1 - \varepsilon}\right) \times 100$$

Cellular automata enable to model natural phenomena

www.directopedia.org

Formulation Design Studio: Expert System CINCAP

Co-Development Toolbox Virtual Equipment Simulators (VES) in order to reduce human failures

- What do you do for a continuous training and education of your production floor operators in order to improve process quality?
- What happens when you start to use new equipment?
- What do you do if your collaborators feel bored and /or frustrated using the operation manual?
- How to train your personnel to correctly respond to critical situations without putting at risk the quality of your product?
- How to fulfill the requirements of continuous education as requested by authorities such as FDA, etc?

What are VES?

- Technically speaking, simulation is modeling process's behavior, form and visual appearance.
- "... like a flight simulator?"
- Comparable to the effectiveness of flight simulator to pilot training!

Simulator vs. interactive animation

- Interactive animation → just reproducing visual appearance.
- Simulation → wider range of possible situations, allowing prediction and exploratory learning.
- Need: strong mechanistic model model for an optimal VES
- CINCAP VES → Beyond interactive animation

Look&Feel (example MiniGLATT)

Virtual Equipment Simulators (VES)

- VES is an ideal tool to get a better process understanding (Process Analytical Technology);
- VES is an ideal tool to explore the limits of the process without putting to danger operators and product;
- VES is an ideal tool for training especially to reduce human errors during real operation;

VES and PAT

- Need: High-quality equipment simulator which is BASED on process understanding → PAT.
- Need: incorporating mechanistic models which describe correctly the process itself.
- This type of VES is directly linked to a science-based expert system.

Science-based VES (e.g. fluid-bed granulator)

Simple but effective

Mollier chart/ backbone of VES

Real-time simulations: modelling possibilities

- Balances → yes
- Response Surface Methodology: → yes
- Micro level modelling: → difficult, almost no.

Virtual Case-study: Granulation

Using VES to understand the process and its boundary conditions

Case Study: example task definition for a trainee

- Trainee must granulate starting powder mix (140 um.) to obtain mean granule size of ca. 300µm. This mean granule size distribution is achieved if binder concentration (PVP) has reached ca. 4% (w/w) in the formulation. Binder solution concentration: 5% (w/w)
- Task for the trainee: pump calibration; estimation of residence time; calculating amount of binder required; study the fluidization regimes; calculate required drying time; proper response to a given critical situation (e.g. air conditioning failure)
- Given process constants etc:
 - Air source: 20%RH, 25°C
 - Assumed exhaust air saturation is constant: 85% (can be changed)
 - Establish pressure (bar) to air throughput (m³/h) calibration curve

Task: pump calibration

Tasks contd.

- Process parameters calculation
 - Mollier chart → water removal capacity of process air, product temperature
 - heat and mass balance → pumping rate, residence time, drying time
 - Select spray pressure from support resources
- Start experiment
 - Be aware to set 0.5bar spray pressure prior to start fluidization (prevents clogging of a nozzle)
 - Check the dynamics of particles growth

Task: critical situation

- It is possible to switch on the in-built generator of a critical situation
- Typical critical situations:
 - Air conditioning failure
 - Pump failure
 - Sudden clogging of filters
 - Temperature sensor failure
- Trainee must properly react to a failure and try to continue operation if possible.

Task: Drying and Reporting

- When product has reached required particle size distribution → switch to drying (stop pumping)
- Continue drying until required product residual moisture content.
- Stop the process by turning the process knob to "off" position.
- Report will be printed
 - Report includes a complete record of all events and user interactions during process
 - There is a possibility to "play back" the recorded process

Task: use VES to optimize process

- Using acquired knowledge trainee can repeat experiment with optimized conditions
 - Shorter residence time
 - Lowering energy consumption
 - Optimized conditions for thermo-labile products

VES in training and what advantages it gives

"Simulation is a learning experience in which a learner performs a meaningful task in a specific context, receives consequential feedback, and has access to support resources"

> Daniel Bielenberg (Accenture), TechLearn, 2001

Building simulations without careful consideration of the learning experience is folly.

VES advantages

- Personnel training
 - Possibility of real personalized individual training
 - Identifying weaknesses and improving operator's skills
 - Testing existing SOPs and developing new SOPs
 - Testing formulation robustness on large equipment!
- Business perspective
 - Reducing human errors
 - Better process understanding leading to a higher quality
 - Facilitated troubleshooting with equipment vendor
- Business perspective (equipment manufacturers)
 - Try it virtually but buy it in a reality (formulation suitability check)
 - Reduce travel and logistical expenses
 - Improved customer satisfaction and better overall experience with the device

Under construction

- Virtual reality
 - Clean rooms
 - 3D versions of machinery (tablet presses, etc.)

Audience Q&A

Thank you for your attention!