

www.pharmtech.unibas.ch

Continuous processes in manufacturing of solid oral dosage forms.

Hans Leuenberger Maxim Puchkov CINCAP LLC c/o Ifiip

Institute of Pharmaceutical Technology Pharmacenter of the University Klingelbergstrasse 50 CH-4056 Basel, Switzerland

Traditional Pharmaceutical R&D Suffers High Attrition*

*Tufts CSDD, H&Q 1998, after Camitro

Slide: Courtesy Dr. A. Hussain, FDA

High Attrition due to? [1]

NMEs (n=198)

Yu, et al. Quantitative Structure Bioavailability
Relationship (QSBR):
Pharm Res. 17:639-644 (2000)

Kennedy, T. (1997) Drug Discovery Today, 2, 436-444.

The SIGMA Concept I

FDA pushes forward the PAT Initiative for very good reasons:

- The variability of most pharmaceutical processes needs to be reduced.
- The performance of a process can be described by its Sigma value.

The SIGMA Concept II

- The champion is the chip industry with a six Sigma manufacturing performance (static values)
 - i.e. with an amount of defective samples \leq 2 ppb.
- The performance of the pharmaceutical industry is around 2 Sigma (≤ 4.6 % defectives).

6 Sigma dynamic value in time!

- A customer-focused, data driven approach to understanding process variation (stability) and defect reduction (capability).
- A performance target of 3.4 defects per million opportunities.

Sigma: A Measure of Process Capability

Sigma is a measure that focuses on the variation of the process output.

SIGMA	DPMO	YIELD
0.0	1,000,000	0.0000%
1.0	691,462	30.8538%
2.0	308,538	69.1462%
3.0	66,807	93.3193%
4.0	6,210	99.3790%
5.0	233	99.9767%
6.0	3.4	99.9997%

FDA Whitepaper March 2004 Three Dimensions of the Critical Path

Assessing Safety	Show that product is adequately safe for each stage of development	 Preclinical: product safe enough for early human testing Eliminate products with safety problems early Clinical: show that product is safe enough for commercial distribution
Demon- strating Medical Utility	Show that the product benefits people	 Preclinical: Select appropriate design (devices) or candidate (drugs) with high probability of effectiveness Clinical: Show effectiveness in people
Industria- lization	Go from lab concept or prototype to manufactura ble product	 Design a high-quality product Physical design/Characterization/Specifications Develop mass production capacity Manufacturing scale-up/Quality control

FDA Whitepaper March 2004 Three Dimensions of the Critical Path

Product and Process Quality Knowledge: Science-Risk Based cGMP's

Artificial Intelligence Al & Information Technology IT can Improve the Utility of Historical Data

Prediction of optimum amount of disintegrant . . .

- ... to minimize the disintegration time (use of expert system CINCAP):
 - based on percolation theory and cellular automata

mathamatical description based only on geometrical and physical and ph

Two cases of water penetration into a tablet as a factor of particles size:

Case 1:
$$r \le (\sqrt{3} - 1) \times R$$

$$\chi_{dis} = \left(\frac{p_s^{rcp}}{1 - \varepsilon} - \varepsilon\right) \times 100$$

Case2:
$$r > (\sqrt{3}-1) \times R$$

$$\chi_{dis} = \left(\frac{p_s^{rcp}}{1 - \varepsilon}\right) \times 100$$

Cellular automata enable to model natural phenomena

www.directopedia.org

Formulation Design Studio: Expert System CINCAP

Identification of critical processes

The wet agglomoration process

- Critical parameters
 - The amount of granulationg liqid
 - The massing time
 - The drying process
- Next slide: results of a experiments analysed with two ANN (Artifical neural networks)

Results₁ of the 2 networks

and of the RSM - technique

Hardness (Crushing strength) values and dissolution rate data

Results₂ of the 2 networks

and of the RSM - technique

Percentage of Drug Dissolved After 15 min (%) R-Square Results for the Tablet Compression Study

	GFF-MLP	SOFM-MLP	RSM
R ² without factor "Batch" R ² with factor "Batch"	0.2589	0.1040	0.1366
	0.8809	0.8775	0.8679

Time to 50% Drug Dissolution (min)
R-Square Results for the Tablet Compression Study

	GFF-MLP	SOFM-MLP	RSM
R ² without factor "Batch"	0.3411	0.2942	0.2739
R2 with factor "Batch"	0.8709	0.8536	0.8449

Fig.: RSM - technique

Fig. R₂ - Results "Dissolution Rate"

Wet agglomeration process - manual and automatic mode

Type of mode	yield (% w/w) 90 - 710 μm	% undersize < 710 μm	undersize < 90 µm
Manual mode n = 20 batches	81.03 ± 2.42	88.30 ± 2.05	6.80 ± 0.51
Automatic mode n = 18 batches	91.45 ± 0.36	96.80 ± 0.31	5.40 ± 0.35

Identification of critical processes

2. Scale-up exercise

- the major problem consists in the fact, that the formulation is optimised on a small scale equipment, but is no longer optimal on a large scale equipment.
 - → Leuenberger H., New Trends in the Production of Pharm. Granules: The classical batch concept and the problem of scale-up / Batch versus continuous processing.

Eur. J. Pharm. Biopharm. 52(3), 2001, 279-296.

Classical scale-up: Pfizer Technology Service Center Freiburg

80 +/- 20 kg

Total area:

4,240 m²
2,450 m² GMP related
1,790 m² Tech. Infrastructure

Capacity:

250 Mio. - 1,500 Mio. SKUs/Year

Real continuous or preferably a quasi-continuous process?

Problem of a dynamic instability in the real continuous granulation process

Real continuous: instability (Numerical Bifurcation Analysis)

2 Parameter Continuation

Influence of milling and external seeds

Literature

Heinrich, S., Peglow, M., Mörl, L.:

Unsteady and steady state particle size distributions in batch and continuous fluidized bed granulation systems,

Chemical Engineering Journal, 6 (2002) 1-2, 223-231.

Heinrich, S., Peglow, M., Ihlow, M., Henneberg, M., Mörl, L.: Analysis of the start-up process in continuous fluidized bed spray granulation by population balance modelling, Chemical Engineering Science, 57 (2002), 4369-4390.

Heinrich, S., Peglow, M., Ihlow, M., Mörl, L.: Particle population modeling in fluidized bed-spray granulation - Analysis of the steady-state and unsteady behavior, Powder Technology, 130 (2003) 1-3, 154-161.

Radichkov, R., Kienle, A., Heinrich, S., Müller, T., Peglow, M., Mörl, L.: A numerical bifurcation analysis of continuous fluidized bed spray granulation with external classification,
Chemical Engineering and Processing (submitted).

Scale – up Surprises

- Granule properties manufactured at a small scale (e.g.7kg subunit Glatt Multicell) may differ from a large scale operation (Diosna P-600, 600 Liters)
- Comparison Glatt Multicell™ and Conventional

→ Glatt Multicell
→ Diosna P-600

Tablet Properties: Compression profile (scale-up effect!)

How to avoid conventional scale-up

The Glatt® Multicell TM equipment for small and large batches

Glatt[®] MULTICELL[™]

Pfizer - Goedecke Technology Center Freiburg, Germany

- Development of new solid oral dosage technologies should focus on four targets
 - Move away from batch concepts to full continuous processes for manufacturing.
 - Optimize manufacturing processes with regard to floor space and cycle times.
 - Support parametric release through in-line testing.
 - Minimize scale-up requirements during drug product development.

Glatt Multicell GMC 30

Semi continuous granulation and drying process

Feeding and dosing system

Glatt Multicell GMC 30

Semi continuous granulation and drying process

Horizontal 30 liter high-speed plough-sheer mixer and rotary high-speed sieving machine for wet sieving

Glatt Multicell GMC 30

Semi continuous granulation and drying process

Three sequential fluid-bed dryers

Semi continuous granulation and drying process

Highlights of the Glatt MULTICELLTM CONCEPT

- Reduction of Time to Market
 - can be best achieved if the R+D Department and the Production Department has the identical equipment to avoid any scale-up exercise, which means in practice:
- Optimize and validate
 - only once your formulation and process!
- A top quality and robust formulation
 - can be developed, which is not only optimal for small but also for large scale production.
- There is no need
 - for a "Bioequivalence" test between small and large scale batches due to a difference in the equipment/performance.

Highlights of the Glatt MULTICELLTM CONCEPT

- Early small scale batches
 - have the same quality as large scale production batches and can be used for long term stability trials etc.
- An Increase in the Productivity
 - as a result of Unattended Production, Lights-out operation
- Goal:
 - Significant Reduction of Cycle Time and Better Use of the capacity of the equipment

Summary of the Glatt Multicell Technology

- Process optimization of a small scale.
- No scale-up as pilot scale is identical with commercial scale.
- Stability results are available at an early development stage.
- No need for multiple bio-studies.

Case Study for Innovation

Technology	Lödige 900/WSG 300	Multicell	
Process	Batch process	Continuous process	
Batch size	Fixed to equipment capacity	Flexible depending on process time	
Mode of operation	Manual-driven and monitored	Almost lights-out- operated	
Floor space	130 m²	100 m²	-23%
Investment	1,6 Mio. US\$	2 Mio. US\$	+25%
Volume of equipment	900 l (270 +/- 50 kg)	30 l (8 +/- 2 kg)	
Output	55 kg/h	96 kg/h	+75%
Overall output	10 kg/24 h/m²	20 kg/24 h/m²	+100%

Glatt[®] MULTICELL[™]

Pfizer - Goedecke Technology Center Freiburg, Germany

Roll compaction

Advantages

- Fully continuous
- Ideal for water sensitive drugs
- Addition of water and removal of water by drying not necessary

Roll compaction

Disadvantages

- Not all drugs/excipients are suitable for roller compaction
- Amount of fines produced can be too high
- Recycling of fines is not well received by regulatory agencies

Roll compaction

Disadvantages

- Produced quality depends on the compressibility/compactibility properties of the primary material
 - i.e. on the amount of crystalline defects,
 which can considerably change the properties
 soft iron versus hardened iron
 - and on the purity!

Continuous processes

Possible future developments

- Should we use Micro-Reactors?
 - For small specific "batches" (personalized medicine)
 - For nano-particulate medicine
 - For use in the early development stage, where only a small amount of drug is available

Continuous processes

Example: Research Project

Production of nanoparticulate aerosols

Aerosol Particle Processing in Micromixers

M. Heim¹⁾, R. Wengeler¹⁾, S. Dreher²⁾, N. Kockmann²⁾, P. Woias²⁾, S. Mall-Gleissle¹⁾, K-H. Schaber¹⁾, H. Nirschl¹⁾ and G. Kasper¹⁾

Institut für Mechanische Verfahrenstechnik und Mechanik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Institut für Mikrosystemtechnik, Universität Freiburg, Georges-Köhler-Allee 103, 79119 Freiburg, Germany

Designing particle-based materials with complex product properties is

- often more easily achieved
 - through continuous, multistage processes,
 - rather than using classical unit operations.

Micro-reactor technology has already demonstrated its

- w suitability for many liquid phase applications and
- shows considerable potential to improve certain tasks in aerosol processing,
 - e.g. by promoting rapid mixing of aerosol streams to produce more uniform dispersions and coatings.

The large surface-to-volume ratio of the micro-reactor

- which is advantageous in many applications
- requires special attention to be given to unwanted particle deposition on the micro-channel walls.

The large surface-to-volume ratio

is important for temperature driven processes, as it increases the heat transfer greatly.

Experimental setup for the deposition into a liquid media

The produced particle size distributions were measured by a standard SMPS System* with optional dilution.

* M.Heim, G.P.Reischl, C.Gerhard and G.Kasper:

Performance of a new commercial Electrical Mobility Spectrometer; Aerosol Sci.Tech. 38 (S2), 2004, 3-14

Thank you for your attention

Hans Leuenberger Maxim Puchkov CINCAP LLC c/o Ifiip

Institute of Pharmaceutical Technology Pharmacenter of the University Klingelbergstrasse 50 CH-4056 Basel, Switzerland

