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1.1 basic concept of ANN

1.2 comparison with other methods used for process optimization

2. Advantages and limitations of ANN
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CONCEPT OF A BIOLOGICAL
NEURON CELL

e Broad network

*Cell body

* Dendrites and
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CONCEPT OF A BIOLOGICALNEURON CELL

When the total sum of impulses surpasses a certain

threshold, the neuron ,,fires*.
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Cell Body
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An artificial neuron is described as Processing

Element (PE)

Input layer
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Input and weight values
can be imagined as vectots:

The sum z = X x; w, is the inner product of the vectors x and w!

parallel x > W z >0
antiparallel x « W 7z < 0
rectangular x

W z=0
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REMARK:

The Input summation

triggers

the activation function
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SIMPLIFIED NETWORK PROCEDURE:

Activation/Transfer sigmoidal function

function hyperbolic tangent function

+1 exitatory

Values between
The first

Output-signal
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ACTIVATION- RESP. TRANSFERFUNCTION

tanh (z)
1}

0.5 |

y = [tanh (X x; w ;)]
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RESULT:

R \

the final (output) value y,

Prof. Dr. Hans Leuenberger, University of Basel 1.1. Basic Concepts
San Fransisco April 20, 2000




DELTA RULE BACK PROPAGATION OF
ERRORS

Back-propagation

procedure adjusts the weight w_

starting from the final output layer backwards!

minimiz .
In order to n ¢ (ys- ts) ie.
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E =%[f(2xiwsi)—ts ]2 U Minimum!

For this optimization the gradient descent method is
normally used.
Thus the partial derivative of E_ has to be calculated for
each weight w,_attached to PE..

Known from the last layer

oE
aEs _ aEs : ays : azs ie. - =[f(zs)_ts]f'(zs)xsk
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In the gradient descent method the weight is
changed as follows:

_noE,

 ow,

Wi

1 = proportionality constant (learning rate)
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The procedure of the Delta Rule Back Propagation
of Errors includes the following steps:

Step 2: The transfer-function of the sum of these new weights
w,, multiplied by x, cotrespond to the ,,new* outpur values
of the PE, of the preceding layer. Now the preceding layer
can be treated in the same way! Thus ,new* weights w_ of
the preceding layer can be calculated.

Step 3: etc: in analogy to step 2!
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Today excellent software exists using specialized
methods to minimize the error E_.

Which values are of interest?

The values w; or the goodness of fit betweeny and t_?
BOTH!

In case of an excellent fit, The knowledge of the
the ANN model can be welght w; attributed to the
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ANN ,black box*
a humber of hidden layers
Input layer of processing elements Output layer

Input layer Hidden layer(s) MULT I -
' LAYER
PERCEPTRON

The Input Layer
describes ...

F | g 4 Output layer
... the independent values of the variables x__ (m =1...p) fixed

for a certain experiment s, which yield the output y, (= result)
in the output layer.



In each processing element the sum z = X x__w_ is
calculated to be used in the activation function and the
weights are determined in order to receive an output y,

close to the target value t_.

To summarize the ANN computing procedure:

For each Processing Element PE

in a layer a partial error E_ can This method is generally known
be defined and minimized by as Delta Rule Back-Propagation
an approriate mathematical of Errors! The back propagation
tool such as the gradient procedure repeatedly adjusts the
descent method. This proce- weights of connections in the
dure has to be repeated for network!

successively preceding layers.



For the determination
of the individual weights w_ a sufficiently large data set
is needed, i.e. a learning set:

Tmi.ﬂlng Data Set Networks s
Input Data Target Data  Output
X 5 ... X, ! y
X1 X - Xip L Y

Ys

Yn
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1.2 Comparison with other methods
used for process optimization

1.2.1 classical experimental design

1.2.2 factorial design (statistical designs)

1.2.3 central composite design (higher order designs)

1.2.4 simplex design

1.2.5 true physical (mechanistic) models...

1.2.6 empirical models, overfitting

1.2.7 application of percolation theory

1.2.8 the black box model (convolution/deconvolution model)



1.2.1 CLASSICAL EXPERIMENTAL DESIGN

* Only one Factor a time is studied.
 Interactions between factors cannot be detected, thus ...

* The results depend on the location of the experiment
in the space of the variables.
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1.2.2 FACTORIAL DESIGN (Statistical Designs)

e More than one Factor a time is studied.
* Interactions between factors can be quantified!

* The results depend less on the location of the experiment
in the space of the variables.
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Example: Comparison between a classical
and a statistical, i.e. 22 Design

% Drug dissolved of a tablet as a function of the amount of
cornstarch (Factor A) and compressional pressure (Factor B):

Classical Experiments:

A) Effect of a higher amount of cornstarch, keeping the
pressure at the lower level: No change in % Drug
dissolved!

B) Effect of a higher pressure: % Drug
dissolved is lower!



CONCLUSION 1I1: Reduction of the compressional pressure
to avoid a possible capping tendency keeping the amount
of cornstarch at the lower level!

RESULT OF CONCLUSION 1: The % of Drug dissolved is
again lowered! What happened? The classical design of
experiments lead to a wrong conclusion!
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THE REAL SITUATION: % Drug dissolved as a function of
the factors A (cornstarch) and B (pressure) according to

the following contour plot:

CONCLUSIONS: The
amount of cornstarch
and the pressure need to
be increased for the

1.2.2 Factorial Design (Statistical Designs)
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THE STATISTICAL 22 DESIGN

(based on the same example as before)

FACTOR X. = A A = Effectof X,
1= FACTORX, =B B = Effectof X,
(cornstarch) (pressure) AB = Interaction
lowerlevel =-1 lowerlevel =- Y. = Experim. Result
upper level =+1 upper level =+1 T = Total
T/4 = Mean
EXPERIMENTAL PLAN (YATES): A | B |AB|Y, | %
1) both factors at the lower level - - |+ |+ |82
a) Factor A at the upper level + | - - |+ |82
b) Factor B at the upper level - |+ | - |+ |78
ab) both factors at the upper level + |+ | + | + 95
Sum (+ -) 2A | 2B 2AB| T
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RESULTS of the 2* = 4 Experiments:

T A B AB
yi=Z+ B Xy + B Xy + X X1 X2
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COMMENTS on the Result of the 22 Design:

The Summarizing Equation (SE) is an approximation
comparable to the 7aylor expansion
of the true (mechanistic) function

y(xl,x2 ) = y =1 (x1%,):

2
y(xl,x2 = 0)+( oy jxl + (a—y]xz + 2[ % )xlx2

ox,0x,
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1.2.3 CENTRAL COMPOSITE DESIGN

A better approximation can be obtained with a higher
order experimental design such as a Central Composite
Design with three levels:
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Comments on the Result
of the Central Composite Design:

The Model Equation (ME) of the Central Composite Design
Experiments:

2 2
ME : y(xl,xz) =a,+a,x,+a,x,+a,x,x,+a,x, +a,x,

is again an approximation similar to the following Taylor
expansion of the (unknown) true function y = f (x,,X, ):
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This approach corresponds to

the RSM Technique,

i.e. RESPONSE SURFACE METHODOLOGY,
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Comments and Comparison to the Application
of Artificial Neural Networks (ANN):

The RSM - Technique is a suitable alternative
to the ANN - methodology.

However a number of preliminary experiments is necessary
to establish a cotrect central composite design, which does
not enter directly into the final evaluation contrary to the
ANN-methodology, where in general the results of all
experiments are taken into account.
General comment: In the majority of the experiments the
RSM - Technique yields more or less the same result as the
ANN - Methodology.



1.2.4 SIMPLEX DESIGN

The Simplex Design
is an extremely efficient method

in the area of optimization
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SIMPLEX DESIGN (Triangle)
Results:

Rank order: C
C better A better B (xlc s X .9 000 X, )
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SIMPLEX DESIGN:
Start Triangle and new experimental point D

PROJECTION . D Better Result expected

C

‘ Good Result
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Comparison with ANN Methodology

* The results of the experiments performed with a Simplex
Design can be compiled in a list (e.g. EXCEL List) for
further Evaluation with the ANN Methodology.

* Both approaches can be used simultaneously.

* The use of a Simplex Design cannot be recommended
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1.2.5 TRUE PHYSICAL (MECHANISTIC) MODELS...

would have the advantage

to be valid in a broad range of the variables.
Thus an extrapolation would be less problematic.

Unfortunately mechanistic models are rare in the area of
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1.2.6 EMPIRICAL MODELS, OVERFITTING

Experimental results Y (x;,X,)
can be fitted by a mechanistic or an empirical model.

If the exact (mechanistic) model is not known,
a power series is often applied:
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Comments: Models and number of parameters

If n.lore parameters fit of the
are included a much better experimental
in a model. data is obtained

However such an approach is completely wrong

as the experimental data exhibit a normal scatter
due to the statistical errot!

The inclusion of too many parameters lead to an ovetfitting!

Plot: Hardness

H= y(x) as a function of compressional stress x
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B-Hardness as a function of compressional pressure c..p, for caffeine
(semi mechanistic model)
90 : s

H(o, - ppy=Holl 7o P

80 B
—_ H.. =94.86 MPa
@ 70 3 4
% - : , : y=10.94-10"" MPa
.J_:. 60 e // , L '. i P, = relativedensity
o 50 ot . . R*=00910
@ :
Q4 L //
] —
I // y(x)=H_(1—exp(-x))
é 20 ‘, B I - |
. ¢ experimental data
. — semi mechanistic

D - ]
0 20 40 60 80 100 120 140 160 FI g . 7

compressional pressure c.p, [MPa]

B-Hardness as a function of compressional pressure c..p, for caffeine
("overfitting" effect with power series)

120

H(6, - p,)=—1.59+3.01x—0.187x>
+0.006x" —9-107 x*

+71077 % — 2107740

R%=0.995

y(x)=a, +a

B-Hardness H [MPa]

¢ experimental data
— power series, n=6

40 60 80 100 120
compressional pressure c..p, [MPa]
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General Comments on Classical

Modeling/ANN:
*a linear
the result dgats
— ¢ *a quadratic
v (x) as :.m can be described as :
effect of varying *a In-linear
the factor x ea In-ln

. MODEL
* Do we have an ovetfitting of the data?
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] 2 / APPLICATION OF PERCOLATION
THEORY

Percolation theory
deals among
other items
with geometrical
phase transitions.
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The continuous addition of
water to an appropriate W/O
emulsion induces as an example

a geometrical phase transition

—

which results in 2 O/W emulsion.

It is evident that certain properties of the system

e.g. electrical conductivity of the O/W-emulsion
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Thus close to the percolation threshold p,
the following model equation of percolation theory

holds for the conductivity:

Y(P)=S(p-p.)?

Prof. Dr. Hans Leuenberger, University of Basel 1.2.7 Application of percolation theroy
San Fransisco April 20, 2000




1.2.8 THE BLACK BOX MODEL
(Convolution/Deconvolution Model)

needs input and output data

similar to the Artificial Neural Network.
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In principle the answer to the answer of the
of a special input input function of
function is compared interest.

A typical example is the determination
of the in-vivo dissolution rate
of a orally administered controlled release dosage form.

The black box is represented by the test person




The special input function

is a drug solution,

i.e. a Deltafunction

100% of the drug

has been dissolved

in an infinite short time.
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After the administration of a controlled release dosage

form

an other plasi as an output function. >rofile results

!

This outpunt function

can be explained as the result of a sequential administration
of Deltafunctions with different weights.
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Black Box Model (Diagrammatic Representation)

1 .
250 Input function , Output function
Y A He — - = .
200 + .
S 0 Deltafunction . Transfer function
ﬁ :
o
o 120 )
5 The black box
°
2 «0 o
Q i llo é 6 h Fig- 9 T T T T T Fig. ]0
} — 2 4 6 8 10 h
{ —
3:2‘4 Necessary Input-function ”g.ml_‘” Plasma concentration
200+ for a controlled release ;- controlled release dosage
form
dosage form .
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Comments and comparison to the ANN -Methodology

A comparison is difficult and somehow stressed:

What 1is in common?

1) The system, i.e. the ,,Black Box*“ needs one
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Comments and comparison to the ANN -Methodology

Convolution / Deconvolution

2) Together with the output data of interest (i.e. output
function a(t)) it is possible to calculate the unknown
input function, which has some similarities to the

weights which are calculated with ANN to define

Prof. Dr. Hans Leuenberger, University of Basel 1.2.8 The black box model (Convolution/Deconvolution Model)
San Fransisco April 20, 2000




2. APPLICATION OF ARTIFICIAL NEURAL
NETWORKS (ANN) IN PHARMACEUTICAL
PROCESS OPTIMIZATION

2.1 Design of Networks

The Design of ANN is considered as an art

and depends on the goals to be achieved.



2.1 Design of Networks >

* In case of a supervised learning step often a generalized

feed forward multilayer perceptron is used GFF-MLP

* In case of an unsupervised or only partially supervised
learning step (used for feature extracting networks) a hybrid

network composed of a self-organizing feature mar
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2.1 Design of Networks 3

* The supervised learning step needs a set of training data
(input and output).
* In case of the unsupervised or adaptive training the

network i1s provided only with input data but not with
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2.1 Design of Networks 4

* Totally unsupervised learning
is not yet well understood and
is studied in special labs to create robots

capable of learning from a changing environment.
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2.1 Design of Networks s

! . e data association
Partially unsupervised

.. e data classification
learning is often used for

* data conceptualization

Prof. Dr. Hans Leuenberger, University of Basel 2. 1 Design of Networks
San Fransisco April 20, 2000




2.1 Design of Networks ¢

Too many hidden layers in a MLP lead to an ovetfitting,
i.e. to a memorizing effect,
which can be compared to

the well known learning technique of students,
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The Problem of Ovetfitting and the number of PEs

Kolgomorov‘s Rule

In case that the number of PEs xi (i = 1...n)
exceeds or is equal to (2n +1

withn =
number of input variables

ANY FUNCTION F(x,, %, ... x,) CAN BE DESCRIBED.
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The Problem of Ovetfitting and the number of PEs

General Rule

If the number of input data (samples)
is equal to the number of PEs

the target values
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2.2 An_example: Tablet compression
study using itwo Arificial Neuron
Networks and the RSM-technique

2.2.1 The Generalized Feed Forward
Multilayer Perceptron (GFF-MLP):



Fig. 13 GFF-MLP
simplified

The input layer consists of 6 PEs,
which correspond to 4 compression

variables (matrix filling speed,
precompression force, compression force,
rotation speed)

The output layer consists of t&ﬁ,ggrggsul}ﬁtsi,o ll.le?nd the batch . Not used n}

for predictio

A: the hardness of the tablet
B: % drug diss. after 15min. and
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2.2.2 Self organizing feature map (SOFM) - MLP

Fig. 14 The hybrid network consists of a SOFM
(Kohonen network) combined with a normal MLP

The input layer is identical to the inputlayer of
the GFF-MLP. The following Kohonen Layer
(SOFM) consists of 6x6 Processing Elements (PE)
and the hidden layer of 11 PEs of the subsequent

The OMf)‘Hé‘layer is identical to the GFF-MLP network.

In both networks the input variables consist of totally 5 factors with 3 levels and 1
factor (formulation) with 2 levels. The input data are processed in the 6x6 PEs
Kohonen layer working as a PCA system and reducing the input variables to the
prinicipal components.

The resulting output of the SOFM is then used as a new input
to the MLP. The factor ,,Batch* was used as a further variable.



2.2.3 Results, of
the 2 networks and of the RSM - technique

A) Replication of an arbitary function
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2.2.3 Results, of
the 2 networks and of the RSM - technique
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2.2.3 Results; of
the 2 networks and of the RSM - technique
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2.2.3 Results, of
the 2 networks and of the RSM - technique

B) Hardness (Crushing strength) values and dissolution rate data

R?=0.9113 R=0.8504
80 - 80 -
3 Z . |
570- gﬂj . . .
2 &
g30~ !. gso_
B o - wpe o
2 . g
§5D_ l-.-ln-o §50*
o 15 o 15
=
T 40 - o s N % 04 o esen t [
-E ..‘ o—Sg -8 . _sg
-0 N -0
o n“ao..
20 4

30 40 50 60 30 40 50
Crushing strength [N] Crushing strength [N]
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2.2.3 Results; of
the 2 networks and of the RSM - technique

R?=0.8970 . Fercentage of Drug Dissolved After 15 min (%)
80 - R-Square Results for the Tabler Compression Study
%70 T GFE-MLP SOFM-MLP RSM
£ 60 - . ~ R®without factor “Batch”  0.2589 0.1040  0.1366
g . R? with factor “Batch” 0.8809 0.8775  0.867%
Z 50 - *
6 v B R webved ¢ 15
E 40 - .-:‘ ‘:., I - ;°
E a0 . e St 0 % Time o 50% Drug Dissolution (min)
&0 t :'; R-Square Resulls for the Tablet Compression Study
| . ““ Ak A :
209 1 7. o 6w GFE-MLP SOFM-MLP RSM
Predicted Crush. strength [N]
10 S e R? without factor “Batch” 0.3411 0.2242  0.27309
R? with factor “Batch” 0.8709 (18536 ().8449

Crushing strength [N]
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2.2.3 Results, of
the 2 networks and of the RSM - technique

Dissolution rate data

The factor ,,batch* can not be used for prediction purposes!

BUT...

*The factor ,,batch* can be used in the case of unknown ,
hidden factors, which have to be analysed in a
subsequent, separate study!

*No wonders can be expected from ANN or other
evaluation/modeling techniques if the experimental data
are not sufficient to explain the behavior of a system!



3. Conclusions and Experience with ANN

* ANN can be very
helpful in the design
and in the optimization
of pharmaceutical (and
other) dosage forms.

e ANN is a valuable
alternative to
experimental
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3. Conclusions and Experience with ANN :

* The advantage of ANN consists in the fact that all
experimental data can be used and that the evaluation is
less sensitive to missing data than in the case of RSM.

* QOutlayers or erroneous data can disturb ANN and/or
other evaluations.
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3. Conclusions and Experience with ANN s

* Major pharmaceutical and chemical companies use
ANN - methodology to optimize the performance of
formulations and of processes leading to new patents
and to the reduction of the development time.

* Itis reported by a German Company* that thanks to
ANN the development time for a special product could
be reduced by three years!

* ANN is used in Germany by BASF, Bayer,
Henkel, Merck and other companies.



3. Conclusions and Experience with ANN 4

* In a modern lab all experimental data should be recorded
in an appropriate way for a subsequent analysis and
evaluation by ANN!

* It may be useful to analyse existing data of complex
systems such as formulations to get a new insight and
understanding of the behavior of such systems.

* ,,Older* Formulations consist in general of many
components and it is often doubtful which of the partly
expensive components is really necessary!

Thus an ANN - analysis may lead to new conclusions and
to new patents for a line extension of a product!
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